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ARTICLE

The use of KPCA over subspaces for cross-scale superpixel 
based hyperspectral image classification
Haoyang Yu a, Zhen Xua, Yulei Wanga,b, Tong Jiaoc and Qiandong Guod

aCenter of Hyperspectral Imaging in Remote Sensing (CHIRS), Information Science and Technology College, 
Dalian Maritime University, Dalian, China; bState Key Laboratory of Integrated Services Networks, Xidian 
University, Xian, China; cGraduate School of Geography, Clark University, Worcester, MA, USA; dSchool of 
Geosciences, University of South Florida, Tampa, FL, USA

ABSTRACT
This paper introduces a new object-based spectral-spatial classifica
tion method for hyperspectral image. The kernel principal compo
nent analysis (KPCA) is firstly performed over subspaces (KPCAsub) 
derived from the original spectral domain, which incorporates lin
ear information with nonlinear formulation. The obtained image is 
then processed via a feature-level fusion with superpixel segmenta
tion at different scales. The final classification result is achieved by 
a cross-scale superpixel based (CSSP) decision fusion framework 
based on each individual operation of support vector machine. 
The resulting method, called KPCAsub-CSSP, contributes to better 
characterization under-limited sample condition, and promotes 
spectral-spatial integration in terms of echoing the complex distri
bution of ground objects. The experimental results on two real 
hyperspectral data sets demonstrate that the proposed method 
exhibits good performance in comparison to the other related 
methods.

ARTICLE HISTORY 
Received 18 June 2020  
Accepted 17 February 2021  

1. Introduction

With the advancement of earth observation systems onboard satellites and aircraft 
(Zalpour, Akbarizadeh, and Alaei-Sheini 2020), multimodal data has been available to 
characterize land surface, providing rich information for distinguishing objects and 
monitoring changes (Samadi, Akbarizadeh, and Kaabi 2019). Hyperspectral remote 
sensing, as one of the advanced environmental monitoring techniques, is featured by 
acquiring data at a high spectral resolution and thus, allows subtle differences of earth 
surface to be captured. It has been widely used in crop yield estimation, mineral 
exploration, and target identification. However, hyperspectral images (HSI) usually con
tain redundant information for classification because of the high correlation among 
spectral bands, and data at high spectral resolution tend to result in the Hughes 
phenomenon, especially given limited training samples. Thus, HSIs are usually pre- 
processed to reduce the dimension of spectral bands in most of the state-of-the-art 
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algorithms for classification. Principal component analysis (PCA) and kernel PCA (KPCA) 
are two commonly used methods for pre-processing, which could effectively concen
trate the information contained in raw data into a few independent components with 
high loads of information. PCA is powerful in optimal dimensionality reduction for linear 
data but does a poor work for non-linear datasets (Schölkopf, Smola, and Müller 1997). 
In contrast, Kernel PCA improves the perform for non-linear datasets through mapping 
raw data into a linearly separable space with kernel functions and then applying PCA 
over newly created space (Jolliffe 2002). By incorporating both linear and non-linear 
information, KPCA enables a better representation of the original datasets. Furthermore, 
its close association to statistical classifiers like support vector machines facilitate the 
characterization and classification of high-dimensional data, including HSI. In addition, 
many other methods for dimensionality reduction have been proposed as well recently. 
For instance, Shao and Zhang (2014) developed a novel method based on semi- 
supervised local Fisher discriminant analysis (SELF), which can get an explicit feature 
mapping. Jiang et al. (2018) proposed a simple but very effective superpixelwise PCA 
(SuperPCA) approach, which can learn the intrinsic low-dimensional features of HSIs. 
Luo et al. (2020) proposed a hybrid-graph learning method to reveal the complex high- 
order relationships of the HSI, termed enhanced hybrid-graph discriminant learning 
(EHGDL). The above methods have also achieved good effects in dimensionality 
reduction.

Besides the spectral information, spatial features retrieved from HSI also provide 
useful information for distinguishing complex objects on the ground. Object-based 
image classification (OBIC) is such a framework which employs not only spectral but 
also spatial features to partition the image into spatially non-overlapping regions, also 
known as segments (Li et al. 2016). Each segment is defined as a superpixel and 
regarded as a processing unit in classification. Simple linear iterative clustering algo
rithm with 0 parameter (SLIC0) is one of the widely used algorithms for image segmen
tation, which is known to provide a sound trade-off between computational cost and 
classification accuracy (Achanta et al. 2012). As the accuracy of classification depends on 
the size of the training samples used, it is critical to find the optimal number that 
balances accuracy and the time consumed for collecting training data (Tirandaz, 
Akbarizadeh, and Kaabi 2020).

In this letter, an object-oriented cross-scale superpixel based (CSSP) classification 
method based on KPCA over subspaces of hyperspectral image (KPCAsub-CSSP) was 
proposed. The method consists of three steps: (1) Extract spectral features with KPCA 
over subspaces grouped by cross-correlation. (2) Partition original images into super
pixels at multiple scales using SLIC0. 3) Apply SVM to spectral images aggregated over 
superpixels at each scale and generate the final classification map with a cross-scale 
decision fusion mode. Our proposed method improves the classification of HSI with 
limited training samples by integrating spectral and spatial features across multiple 
scales.

2. Proposed Framework

Let X ¼ x1;x2;. . .;xd½ � denotes the n samples of a HSI, where xi ¼ xi;1;xi;2;. . .;xi;d
� �T is the 

spectral vector associated with the pixel xi 2 X and composed of d spectral bands.
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2.1. KPCA over subspaces

PCA projects the dataset in a space that maximizes the variance along each orthogonal 
basis vectors. As a linear algorithm, it fails to retrieve nonlinear information in HSIs. KPCA 
solves this problem by introducing the kernel function to PCA, such as the Radial Basis 
Function (RBF) Kernel. It allows the algorithm to project the data into a higher dimensional 
space and thus retrieve higher-order statistics. However, it also leads to the reverse 
problem encountered with PCA. In this context, our method is proposed to perform 
KPCA over subspaces created based on the similarity of spectral bands.

The linear information shared among all the bands can be measured by computing the 
normalized cross-correlation matrix C 2 d�d. Its symmetrical element Ck;l or Cl;k is defined 
as the following equations, where k and l denote the band indexes. 

Ck;l ¼
1

ðn � 1Þ
ffiffiffiffiffiffiffiffiffi
σkσl
p

Xn

i¼1
ðxi;k � μkÞðxi;l � μlÞ

T
�
�
�

�
�
� (1) 

σk ¼
1

n � 1

Xn

i¼1
ðxi;k � μkÞ

2 (2) 

μk ¼
1
n

Xn

i¼1
xi;k (3) 

where n and d denote the number of pixels and bands, and xi;k represents the value of xi 

in band k. Since C is a symmetrical greyscale image, the subsequent operations can be 
implemented in either horizontal or vertical directions. The purpose of follow-up process 
is to group similar bands and divide them into different subspaces. As shown in Figure 1, 
a vertical Sobel edge filter together with a morphological filter is performed on C, such 
that to estimate the approximation of the position of the subspace boundary. The 
obtained binary image is denoted as matrix B, whose rows can be considered as 
a possible linear decomposition of the spectral space in subspaces. Thus, the vector V is 
computed as 

Vi ¼
Xd

j¼1

Bj;i (4) 

here each component Vi, 1 � i � d, represents the length of time to find the boundary of 
the position of the spectral band i. A mean threshold is applied on V and the positions of 
the final boundaries are stored in a binary vector F as 

Figure 1. The procedures of KPCA over subspaces. (a) is hyperspectral image of ROSIS Pavia University. 
(b) is the normalized cross-correlation matrix C. (c) is the matrix B. (d) is the vector F.
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Fi ¼
1 if ViμV
0 otherwise

�

(5) 

μV ¼
1
N

Xd

i¼1

Vi (6) 

N ¼
X

i¼1

d Vi

Vi
(7) 

where Fi ¼ 1 denotes that the boundary of a subspace lies in the position of band i.

2.2. Cross-scale decision fusion

The spatial distribution of various materials in real images is usually different, which leads 
to the fusion and integration in a fixed scale is not representative and may cause the 
imbalance among categories. In this case, cross-scale decision fusion is an effective 
framework, which is a two-step implementation that requires at least two different over- 
segmentation maps: one is with fine resolution and the other one is with coarse resolu
tion. As illustrated in Figure 2, they are named as scale j and scale j + 1, which are obtained 
by SLIC0 algorithm with two different sets of superpixels. The superpixels with the finest 
scale j need to be classified beforehand. The first step is a spatial voting where the 
superpixels with scale j + 1 are used as reference for the superpixels with scale j. For 
each superpixel Si in scale j + 1, the label of its contained pixels is identified as follows: 

classðSiÞ ¼ arg max
c2½1;C�

X

x2Si

IðclassðxÞ; cÞ (8) 

where IðxÞ is an indicator function. It equals to 1 when the classification result of sample 
x in scale j equals to class c, where c 2 ½1; C� and C indexes the total number of classes.

The second step is required only if three scales or more are used: it is a typical pixel- 
wise voting among all the spatial-scale results (Yu et al. 2017).

Figure 2. Cross-scale decision fusion process.
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2.3. KPCAsub-CSSP

The framework of the KPCAsub-CSSP is shown in Figure 3. At first, superpixels are 
computed by SLIC0 at different segmentation scales that are automatically chosen. 
Then, the size of superpixels is doubled from one scale to another. At last, the coarsest 
scale only contains the superpixels with about 10% of the size of the original HSI, to 
prevent the under-segmentation. Afterwards, for each scale, each superpixel is integrated 
with a feature-extracted image of KPCA over subspaces by means of feature averaging in 
the corresponding coverage region. All the scales except the coarsest are classified by 
SVM. After that, the cross-scale decision fusion process is implemented to integrate the 
results from different scale to generate the final classification map. From the structure of 
Figure 3, if the upper part only considers the processing of a single scale, it can be 
regarded as a single-scale version. Also, if the lower part does not have the processing 
of subspace projection, it can be regarded as a version without feature optimization. The 
whole framework is a comprehensive processing of spectral and spatial information.

3. Experimental Results

There are two well-known datasets used in the experiments: the Pavia University dataset 
and the Indian Pines dataset. The Pavia University dataset was collected by the Reflective 
Optics System Imaging Spectrometer (ROSIS) in 2001. It consists of 103 spectral bands, 
ranging from 430 nm to 860 nm, with 12 noisy bands removed. Its spatial resolution is 
1.3 m and it contains 610 × 340 pixels, with 42,776 labelled samples divided into 9 classes. 
0.42–2.1% of all the samples were randomly drawn to construct the training set.

The second real dataset is the Indian Pines dataset with 145 × 145 pixels captured in 
1992 by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The spatial resolu
tion is 20 m and the covered wavelength ranges between 400 nm and 2500 nm with 220 
spectral bands. Besides, 16 classes were derived from a total of 10,249 samples. Here, 1.6– 
7.8% of the samples were randomly selected to construct the training set.

Figure 3. The general framework of the proposed KPCAsub-CSSP. (The settings follow the former 
definition and procedure in Figures 1 and 2).
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For comparison purposes, several other related algorithms are presented: (1) A regular 
SVM classifier with an RBF kernel is used as a baseline for evaluation. (2) The KPCA-SSSP. 
The basic version of the framework without the processes of subspaces and cross-scale 
fusion. (3) KPCAsub-SSSP/PCAsub-SSSP, a single-scale version of the framework without 
the process of cross-scale fusion. (4) KPCA-CSSP. The cross-scale framework without the 
process of subspaces. (5) KPCAsub-CSSP/PCAsub-CSSP. The proposed framework with 
KPCA/PCA for dimensionality reduction. Considering the variation of different single-scale 
versions, the result of the best scale is presented.

Overall accuracy (OA) is used for the accuracy assessment. Table 1 shows that PCAsub- 
SSSP always obtains the highest accuracy among the algorithms only using single-scale for 
12–18 features. However, the performance of KPCAsub-SSSP is very close to that of PCAsub- 
SSSP when using 24 or 30 features. In addition, KPCAsub-SSSP constantly outperforms KPCA- 
SSSP, which indicates the usefulness of the subspaces for the classification. We selected 12– 
30 features in the experiments, because less than 12 features are not enough for these 
algorithms, and with more than 30 features, the OA statistics started to decrease. No matter 
how many training samples were selected, with 12 to 18 features, PCAsub-CSSP is always the 
best classifier; whereas with 24–30 features KPCAsub-CSSP becomes the leader. Figure 4 
shows the classification maps obtained by different tested methods with 900 training 
samples (100 samples per class). Based on the results of Figure 4 and Table 1, comparing 
the single-scale methods, the cross-scale methods can better incorporate the spatial infor
mation, which leads to increases in both the OA statistics and classification performances.

Table 2 shows the classification results using the Indian Pines dataset. Similar findings 
can be drawn from it, but the gap between the single-scale results and the cross-scale 
results is smaller than that of the first dataset due to the low spatial resolution of the 
Indian Pines dataset. Moreover, the regular SVM is always the worst classifier for this 

Table 1. Overall Accuracies (in percent) for the ROSIS Pavia University scene. The table presents the 
mean results of 10 tests (The best results are highlighted in bold).

Num. of Training 
Samples

SVM on 103 
bands

Num. of 
Features

KPCA- 
SSSP

PCAsub- 
SSSP

KPCAsub- 
SSSP

KPCA- 
CSSP

PCAsub- 
CSSP

KPCAsub- 
CSSP

180 79.3% 12 69.8% 79.4% 73.5% 78.6% 86.3% 82.3%
18 74.7% 76.3% 72.7% 81.3% 86.1% 82.7%
24 75.5% 80.0% 79.3% 83.6% 85.4% 87.0%
30 79.6% 78.7% 80.1% 86.4% 85.8% 87.5%

360 82.3% 12 74.1% 86.2% 79.2% 86.7% 92.1% 86.7%
18 81.0% 87.1% 82.1% 88.8% 93.4% 89.8%
24 82.5% 88.5% 86.9% 90.5% 93.8% 94.3%
30 85.0% 88.8% 89.5% 91.7% 93.5% 94.5%

540 85.8% 12 79.1% 88.9% 82.3% 87.9% 94.3% 89.1%
18 82.8% 90.8% 84.6% 90.2% 95.4% 91.4%
24 85.2% 90.8% 89.7% 92.3% 95.2% 95.8%
30 86.7% 90.1% 90.6% 93.2% 95.2% 96.4%

720 86.8% 12 78.9% 91.5% 83.9% 86.7% 95.5% 90.3%
18 84.6% 91.3% 86.0% 92.2% 95.6% 93.0%
24 87.4% 91.3% 91.1% 94.1% 95.9% 96.9%
30 88.9% 92.1% 92.6% 94.7% 96.1% 97.4%

900 88.6% 12 79.6% 92.1% 84.8% 87.5% 95.9% 91.0%
18 84.7% 92.6% 87.3% 92.5% 96.4% 94.1%
24 86.8% 92.4% 92.5% 92.9% 96.5% 97.4%
30 89.2% 93.1% 93.2% 95.0% 96.6% 97.8%
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scene, struggling with the Hughes phenomenon and the noise. These two problems can 
be eliminated by the proposed algorithms.

4. Conclusion

In this letter, a new object-oriented spectral-spatial method, called KPCA-CSSP, was 
proposed for hyperspectral image classification. Its major advantages include applying 
KPCA to subspaces for feature extraction and employing a cross-scale superpixel-level 
fusion framework for comprehensive information integration. The proposed method has 
been compared with RBF kernel-based SVM and other related methods for the classifica
tion of two real datasets. Experimental results show that our method significantly 
improves the classification performance of HSI compared to other methods.

Figure 4. Classification maps obtained by different tested methods for the ROSIS University of Pavia 
data set. In all cases, 900 training samples in total (100 samples per class) were used.

Table 2. Overall Accuracies (in percent) for the AVIRIS Indian Pines Scene, the results correspond to the 
mean over 10 tests (The best results are highlighted in bold).

Num. of Training 
Samples

SVM on 200 
bands

Num. of 
Features

KPCA- 
SSSP

PCAsub- 
SSSP

KPCAsub- 
SSSP

KPCA- 
CSSP

PCAsub- 
CSSP

KPCAsub- 
CSSP

160 48.7% 12 61.7% 65.2% 64.5% 64.2% 73.4% 72.3%
18 65.0% 61.3% 64.4% 67.6% 71.5% 72.1%
24 64.8% 66.1% 66.0% 68.6% 72.2% 72.7%
30 65.2% 65.2% 67.0% 68.7% 71.6% 71.3%

320 63.6% 12 73.2% 75.5% 76.3% 77.7% 82.9% 82.3%
18 76.0% 76.8% 79.0% 79.6% 84.3% 84.2%
24 76.7% 77.1% 78.3% 82.2% 84.7% 84.4%
30 76.4% 77.0% 78.2% 82.5% 85.3% 84.8%

480 68.8% 12 78.5% 80.6% 81.5% 83.4% 88.4% 87.2%
18 82.7% 82.9% 83.9% 86.8% 89.8% 90.0%
24 80.7% 83.4% 84.2% 87.5% 89.4% 89.2%
30 81.3% 83.3% 84.3% 88.2% 90.7% 90.8%

640 71.1% 12 81.4% 83.9% 84.3% 86.3% 90.9% 89.9%
18 84.4% 85.5% 86.1% 89.0% 91.6% 91.6%
24 83.5% 86.2% 87.2% 90.2% 91.6% 91.6%
30 85.0% 85.4% 85.8% 91.5% 91.9% 91.8%

800 75.0% 12 84.1% 85.4% 86.2% 88.6% 92.3% 91.4%
18 87.0% 87.9% 88.9% 91.3% 93.6% 93.5%
24 86.2% 87.2% 87.8% 92.7% 94.3% 93.9%
30 86.9% 88.1% 88.2% 92.9% 95.4% 95.1%
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